Search results for "NUCLEAR DECAY"

showing 3 items of 3 documents

A search for neutral higgs particles in Z$^0$ decays

1992

Abstract The search in DELPHI data for neutral Higgs bosons is described. No candidate for the Standard Model Higgs is seen in Z0 decays to H 0 ν ν , H 0 μ + μ − or H0τ+τ− after selections that proved efficient for finding simulated H0. One remaining candidate for Z0 → H0e+e− is consistent with background. Together with our earlier studies, these results restrict the H0 mass to be above 38 GeV/c2 at the 95% confidence level. No signal is found for decays of Minimal Supersymmetric Standard Model neutral Higgs bosons to τ+τ−. Limits are obtained for their decays to produce four jets.

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationSTANDARD MODEL01 natural sciencesLower limitStandard ModelNuclear physicsPHYSICSLIMITS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsBosonPhysicsMASS SCALAR BOSONLIGHT SCALAR010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyZ0 DECAYE+E COLLISIONSSupersymmetrySUPERSYMMETRIC MODELSLEPNUCLEAR DECAYHiggs bosonHigh Energy Physics::ExperimentFísica nuclearMASS SCALAR BOSON; Z0 DECAY; SUPERSYMMETRIC MODELS; STANDARD MODEL; E+E COLLISIONS; NUCLEAR DECAY; LIGHT SCALAR; LIMITS; LEP; PHYSICSParticle Physics - ExperimentMinimal Supersymmetric Standard Model
researchProduct

Nuclear structure functions at a future electron-ion collider

2017

The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction $x$---robust experimental constraints below $x\ensuremath{\sim}{10}^{\ensuremath{-}2}$ at low resolution scale ${Q}^{2}$ are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to $x\ensuremath{\sim}{10}^{\ensuremath{-}5}$ at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-$x$ region in much greater detail. In the present paper we simula…

Particle physicsCOLLISIONSparticle interactionsProtonNuclear TheoryHERAFOS: Physical sciencesPartonPROTON7. Clean energy01 natural sciences114 Physical scienceslaw.inventionHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)DEEP-INELASTIC SCATTERINGHigh Energy Physics - Experiment (hep-ex)law0103 physical sciencesKINEMATIC RECONSTRUCTIONNuclear Experiment (nucl-ex)010306 general physicsColliderNuclear ExperimentNuclear ExperimentPhysicsta114010308 nuclear & particles physicsRUNOrder (ring theory)Deep inelastic scatteringGluonDistribution functionnuclear structureHigh Energy Physics::ExperimentLHCnuclear decaysRelativistic Heavy Ion ColliderPDFS
researchProduct

Quantum-state-selective decay spectroscopy of 213Ra

2017

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a 48Ca beam impinging on a thin 170Er target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5n evaporation channel 213Ra was mass-selected in SHIPTRAP, and the 213Ra ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the …

gamma-ray spectroscopynuclear shell modelalpha decayPhysics::Instrumentation and DetectorsPenning trapSubatomic Physicsnuclear structureshell modelnuclear decaysNilsson-Strutinsky calculationsNuclear Experiment
researchProduct